Saturday, 7 October 2017

Moving Average Graph Beispiel


Moving Average Calculator Angesichts einer Liste von sequentiellen Daten können Sie den n - point gleitenden Durchschnitt (oder den gleitenden Durchschnitt) konstruieren, indem Sie den Durchschnitt jedes Satzes von n aufeinanderfolgenden Punkten finden. Wenn Sie beispielsweise den geordneten Datensatz 10, 11, 11, 15, 13, 14, 12, 10, 11 haben, wird der 4-Punkt-Verschiebungsdurchschnitt 11,75, 12,5, 13,25, 13,5, 12,25, 11,75, Bewegungsdurchschnitte verwendet Um sequentielle Daten zu glätten, bilden sie scharfe Spitzen und Dips, die weniger ausgeprägt sind, da jeder Rohdatenpunkt nur ein Bruchteilgewicht im gleitenden Durchschnitt gegeben wird. Je größer der Wert von n ist. Desto glatter ist der Graph des gleitenden Mittelwerts im Vergleich zum Graphen der ursprünglichen Daten. Aktienanalysten betrachten häufig bewegte Durchschnitte der Aktienpreisdaten, um Trends vorherzusagen und Muster besser zu sehen. Sie können den folgenden Taschenrechner verwenden, um einen gleitenden Durchschnitt eines Datensatzes zu finden. Anzahl der Begriffe in einem einfachen n-Punkt gleitenden Durchschnitt Wenn die Anzahl der Begriffe in der ursprünglichen Menge d ist und die Anzahl der in jedem Durchschnitt verwendeten Begriffe n ist. Dann wird die Anzahl der Begriffe in der gleitenden Durchschnittssequenz sein. Wenn Sie beispielsweise eine Sequenz von 90 Aktienkursen haben und den 14-tägigen Rollendurchschnitt der Kurse einnehmen, wird die rollende durchschnittliche Sequenz 90-14-177 Punkte haben. Dieser Rechner berechnet Bewegungsdurchschnitte, bei denen alle Begriffe gleich gewichtet werden. Sie können auch gewichtete gleitende Durchschnitte erstellen, in denen einige Begriffe stärker gewichtet werden als andere. Zum Beispiel geben mehr Gewicht zu jüngeren Daten, oder die Schaffung eines zentral gewichteten Mittelwert, wo die mittleren Begriffe werden mehr gezählt. Siehe die gewichteten gleitenden Durchschnitte Artikel und Taschenrechner für weitere Informationen. Zusammen mit bewegenden arithmetischen Mitteln schauen einige Analytiker auch den bewegten Median der geordneten Daten an, da der Median von den fremden Ausreißern nicht beeinflusst wird. Die Daten, die die Zufallsvariationen entfernen, zeigen Trends und zyklische Bestandteile Inhärent in der Sammlung der Daten, die über Zeit genommen werden, ist irgendeine Form von Zufällige Veränderung. Es gibt Methoden zur Verringerung der Annullierung der Wirkung aufgrund zufälliger Variation. Eine häufig verwendete Technik in der Industrie ist Glättung. Diese Technik zeigt, wenn sie richtig angewendet wird, deutlicher den zugrunde liegenden Trend, saisonale und zyklische Komponenten. Es gibt zwei verschiedene Gruppen von Glättungsmethoden Mittelungsmethoden Exponentielle Glättungsmethoden Mittelwertbildung ist der einfachste Weg, um Daten zu glätten Wir werden zunächst einige Mittelungsmethoden untersuchen, z. B. den einfachen Mittelwert aller vergangenen Daten. Ein Manager eines Lagers möchte wissen, wie viel ein typischer Lieferant in 1000-Dollar-Einheiten liefert. Heshe nimmt eine Stichprobe von 12 Lieferanten zufällig an und erhält die folgenden Ergebnisse: Der berechnete Mittelwert oder Mittelwert der Daten 10. Der Manager entscheidet, diese als Schätzung der Ausgaben eines typischen Lieferanten zu verwenden. Ist dies eine gute oder schlechte Schätzung Mittel quadratischen Fehler ist ein Weg, um zu beurteilen, wie gut ein Modell ist Wir berechnen die mittlere quadratische Fehler. Der Fehler true Betrag verbraucht minus die geschätzte Menge. Der Fehler quadriert ist der Fehler oben, quadriert. Die SSE ist die Summe der quadratischen Fehler. Die MSE ist der Mittelwert der quadratischen Fehler. MSE Ergebnisse zum Beispiel Die Ergebnisse sind: Fehler und quadratische Fehler Die Schätzung 10 Die Frage stellt sich: Können wir das Mittel verwenden, um Einkommen zu prognostizieren, wenn wir einen Trend vermuten Ein Blick auf die Grafik unten zeigt deutlich, dass wir dies nicht tun sollten. Durchschnittliche Gewichtungen alle früheren Beobachtungen gleich In Zusammenfassung, wir sagen, dass die einfache Mittelwert oder Mittelwert aller früheren Beobachtungen ist nur eine nützliche Schätzung für die Prognose, wenn es keine Trends. Wenn es Trends, verwenden Sie verschiedene Schätzungen, die den Trend berücksichtigen. Der Durchschnitt wiegt alle früheren Beobachtungen gleichermaßen. Zum Beispiel ist der Durchschnitt der Werte 3, 4, 5 4. Wir wissen natürlich, dass ein Durchschnitt berechnet wird, indem alle Werte addiert werden und die Summe durch die Anzahl der Werte dividiert wird. Ein anderer Weg, den Durchschnitt zu berechnen, besteht darin, daß jeder Wert durch die Anzahl von Werten geteilt wird, oder 33 43 53 1 1.3333 1.6667 4. Der Multiplikator 13 wird das Gewicht genannt. Allgemein: bar frac sum links (frac rechts) x1 links (frac rechts) x2,. ,, Links (frac rechts) xn. Die (links (frac rechts)) sind die Gewichte und summieren sich natürlich auf 1.

No comments:

Post a Comment